Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2
نویسندگان
چکیده
Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs.
منابع مشابه
Induced Resistance by a Long-Chain Bacterial Volatile: Elicitation of Plant Systemic Defense by a C13 Volatile Produced by Paenibacillus polymyxa
BACKGROUND Some strains of plant growth-promoting rhizobacteria (PGPR) elicit induced systemic resistance (ISR) by emission of volatile organic compounds (VOCs) including short chain alcohols, acetoin, and 2,3-butanediol. The objective of this study was to evaluate whether species-specific VOCs from PGPR strain Paenibacillus polymyxa E681 can promote growth and induce resistance in Arabidopsis....
متن کاملOne shot-two pathogens blocked
Bacteria and plant derived volatile organic compounds have been reported as the chemical triggers that elicit induced resistance in plants. Previously, volatile organic compounds (VOCs), including acetoin and 2,3-butanediol, were found to be emitted from plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis GB03, which had been shown to elicit ISR and plant growth promotion. More recent...
متن کاملBacterial volatiles induce systemic resistance in Arabidopsis.
Plant growth-promoting rhizobacteria, in association with plant roots, can trigger induced systemic resistance (ISR). Considering that low-molecular weight volatile hormone analogues such as methyl jasmonate and methyl salicylate can trigger defense responses in plants, we examined whether volatile organic compounds (VOCs) associated with rhizobacteria can initiate ISR. In Arabidopsis seedlings...
متن کاملVolatile organic compounds: a bacterial contribution to plant sulfur nutrition.
In the decade since it was first reported that volatile organic compounds (VOCs) released by bacteria can promote plant growth, it has become clear that VOC-mediated interactions between bacteria and plants are widespread (reviewed in Bailly and Weisskopf, 2012). The effects of VOCs on plants have been found to vary, ranging from plant growth promotion to inhibition, even within the same combin...
متن کاملAnalysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017